A modular planar robotic manipulandum with end-point torque control.

نویسندگان

  • Ian S Howard
  • James N Ingram
  • Daniel M Wolpert
چکیده

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modular planar robotic manipulandum with end - point torque control an S . Howard

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging frommechanisms of neural control to biomechanics. However,most current designs are optimized for studying eithermotor learning or stiffness. Even fewer include end-point to...

متن کامل

Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path

Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...

متن کامل

A Novel Hybrid-Excited Modular Variable Reluctance Motor for Electric Vehicle Applications: Analysis, Comparison, and Implementation

A variable reluctance machine (VRM) has been proven to be an outstanding candidate for electric vehicle (EV) applications. This paper introduces a new double-stator, 12/14/12-pole three-phase hybrid-excited modular variable reluctance machine (MVRM) for EV applications. In order to demonstrate the superiorities of the proposed structure, the static torque characteristics and dynamic performance...

متن کامل

Analysis of Manipulators Using SDRE: A Closed Loop Nonlinear Optimal Control Approach

In this paper, the State Dependent Riccati Equation (SDRE) method is implemented on robotic systems such as a mobile two-links planar robot and a xed 6R manipulator with complicated dynamic equations. Dynamic modelings of both cases are presented using the Lagrange method. Afterwards, the Dynamic Load Carrying Capacity (DLCC), which is an important characteristic of robots, is calculated for th...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 181 2  شماره 

صفحات  -

تاریخ انتشار 2009